Bremen

Y

Virtual Reality &

Physically-Based Simulation
Mass-Spring-Systems

A
oW
<~ N SN

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de



http://zach.in.tu-clausthal.de/teaching/vr_0708/index.html

Bremen

W Definition bal

VR =

unn
- .

* A mass-spring system is a particle system consisting of:
1. A set of point masses m; with positions x; and velocitiesv;,i=1...n;

2. Aset of springs s;; = (7, j, ks, kg) , where s; connects masses i and j, with rest
length I, spring constant ks (= stiffness) and the damping coefficient kg

* Typical spring topology:
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U Some Properties

* Advantages:
e Very easy to program
e Ideally suited to study different kinds of solving methods
e Ubiquitous in games (cloths, capes, sometimes also for deformable objects)

e Disadvantages:

e Some parameters (in particular the spring constants) are not obvious, i.e.,
difficult to derive

* No built-in volumetric effects (e.g., preservation of volume)
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U Example Mass-Spring System: Cloth
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Occasionally also Used for 1D and 3D Objects
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Y Did You Learn About Springs in Your Physics Class in School ?

Also, how many of
you are familiar
with vector
calculus?

https://www.menti.com/1ioldghgtv
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Y Forces Exerted by a Single Spring (Plus Damper) g

e Given: masses m; and m; with positions x; , x;

X — X; i y J
o | r,, = ] Fij
I gl . -
* The force between particlesiand : Io
1. Force exerted by the spring (Hooke's law): i ks
ij _fij
¥ = kory(I1x; = xill = o) Sl I
acts on particle j in the direction of j ky

2. Force exerted on i by damper: f = —kg((v; — v;)-r;j)r;;
3. Total forceon i : fi = fJ 4 £
4. Force on m;: fii — _fi
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Y Remarks

* A spring-damper element in reality: %Dm_&‘@

1% — xill = lo
lo

e Alternative spring force: 27 = k.r;;

e Notice: from (4) it follows that the total momentum is conserved
* Momentum p=v-m
e Fundamental physical law (follows from Newton's laws)

* Note on terminology:
e English "momentum" = German "Impuls" = velocity x mass

e English "Impulse" = German "KraftstoR" = force x time
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Y Simulation of a Single Spring

* From Newton’s law, we have: X = %f

e Convert this differential equation (ODE) of order 2 into ODE of order 1:
x(t) = v(t)
u(t) = Lf(t)
* Initial values (boundary values): v(ty) = vy, X(ty) = X
* By Taylor expansion we get: x(t + At) = x(t) + At x(t) + O(At*)
* Analogously: v (t + At) = v (t) + At v (t)
e This integration scheme is called explicit Euler integration

e "Simulation" = "Integration of ODE's over time"
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The Main Loop for a Mass-Spring System

forall particles i

initialize x;, Vv;, m;

loop forever:

forall particles i
/l
i FEHF L S f(xi,vix,v)
J.(i.j)es

forall particles i

fi
V; + = At'—
mj
i TP = At'V,'

render the system every n-th time

f9 = gravitational force

<l = penalty force exerted by collision (e.g., from obstacles)
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Y Properties of Explicit Euler Integration

* Advantages:
e Can be implemented very easily
* Fast execution per time step
* Is "trivial" to parallelize on the GPU (— "Massively Parallel Algorithms")
e Disadvantages:
 Stable only for very small time steps
* Typically At = 104 ... 10-3 sec!
e With large time steps, additional energy is generated "out of thin air", until the
system explodes ©

e Example: overshooting when simulating a single spring

 Errors accumulate quickly
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i

Example for the Instability of Euler Integration "«
* Consider the differential equation x(t) = —kx(t)

e The exact solution: x(t) = xg e **

e Euler integration does this: x'™" = x' + At(—kx")

e Case At>1 : x"=x"(1- kAt)

<0

= xt oscillates about O, but approaches O (hopefully)

* Case At>%: = Xt — oo |
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@J Visualization

position

time

* Terminology: if k is large — the ODE is called "stiff "
* The stiffer the ODE, the smaller At has to be!
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W Visualization of Error Accumulation

Consider this ODE:  x(t) = (_;2>
1

Exact solution: x(t) = <rr§?r?((:i§))>

The solution by Euler integration moves in
spirals outward, no matter how small At!

e Conclusion: Euler integration accumulates

errors, no matter how small At!
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U Visualization of Differential Equations

* The general form of an ODE (ordinary differential equation):

x(t) = f(x(t), t)

* Visualization of f as a vector field:

* Notice: this vector field
can vary over time!

* Solution of a
boundary value problem
= path through this field
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Y Other Explicit Integrators ‘

e Runge-Kutta of order 2:

* ldea: approximate f( x(t), t) by using the derivative at positions x(t) and x( t+ »2At)

e The integrator (w/o proof):

t 1 t t
a; =V aQZEf(x,v)
b, =vi+ 1Ataz b, = if(xt + 1Atal, vi+ 1Ataz)
2 m 2 2
xItl = xt + Atb, vitt = vt + Atb,

e Runge-Kutta of order 4:
* The standard integrator among the explicit integration schemata
* Needs 4 function evaluations (i.e., force computations) per time step
* Order of convergence is: e(At) = O(At*)
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@J Visualization

* Runge-Kutta of order 2:

Y
h X
§ xn xn+1
XD }(1= }{0+h Euler

e Runge-Kutta of order 4: I
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Demo

G. Zachmann

®00 Mass Spring System Demo

Display a menu ]

http://www.dhteumeuleu.com/dhtml/v-grid.html
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Y How Does the Energy of a Mass-Spring System Change Over Time?

https://www.menti.com/1ioldghgtv
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Y Verlet Integration g 1

* A general, alternative idea to increase the order of convergence: utilize
values from the past

* Verlet integration = utilize x(t-At)
* Derivation:
e Develop the Taylor series in both time directions:

x(t + At) = x(t) + Atx(t) + %Atzii(t) — %At?")'('(t) + 0(At%)

x(t — At) = x(t) — Atx(t) + %Atzi(t) — %At3'>'('(t) +0(At%)
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)

* Add both:
x(t + At) + x(t — At) = 2x(t) + At® %(t) + O(At*)

x(t + At) = 2x(t) — x(t — At) + At® %(t) + O(At*)

e |nitialization:

K(A) = x(0) + Atv(0) + 5 AP (~F(x(0), v(0))

m

* Remark: the velocity does not occur any more! (at least, not explicitly)

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems
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W Constraints

-
4
e

e Big advantage of Verlet over Euler & Runge-Kutta: makes it very easy to handle
constraints on positions

e Definition: constraint = a condition on the position of one or more mass points
e Examples:

1. A point must not penetrate an obstacle

2. The distance between two points must be constant,
or distance must be < some maximal distance

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems 22
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e Example: consider the constraint ||x; — xo|| = I

1. Perform one Verlet integration step = X

2. Enforce the constraint:

1. -
d = (%" = | o)

t+1 ot+1
Xl+ = X1+ + dr12
Xg—i_l = )Aég_*—l — drlg

%t (tentative new positions)

* Problem: if several constraints are to constrain the same mass point, we

need to employ constraint satisfaction algorithms

G. Zachmann
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Y Time-Corrected Verlet Integration

* Big assumption in basic Verlet: time-delta's are constant!
e Solution for non-constant At's:
e Timestepsare: t;=t_1+ At;_; and t; =t + At
e Expand Taylor series in both directions:
X(t,' -+ At,') and X(t,' — At,'_l)
e Divide the expansions by At;, and At;_;, respectively, then add both, like in
the derivation of the basic Verlet

e Rearranging and omitting higher-order terms yields:

x(t,- + At,-) = X(t,') + AAt,-tzl (X(l’,’) — X(t,' — At,'_l)) + i(ti)

At; + At
2

At;

* Note: basic Verlet is a special case of time-corrected Verlet

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems
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Implicit Integration (a.k.a. Backwards Euler)

All explicit integration schemes are only conditionally stable

* l.e.: they are only stable for a specific range for At
* This range depends on the stiffness of the springs

* Goal: unconditionally stability

* One option: implicit Euler integration

explicit implicit
x; T =x; 4+ Atv} X\ Th=x} + Atvi™
t+1 t 1 t t+1 t ]' t+1
Vit =wv; + At;f(x ) Vit = + At;f(x )

* Now we've got a system of non-linear, algebraic equations, with x*+1 and
v+l as unknowns on both sides = implicit integration

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems
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W Solution Method

* Write the whole spring-mass system with vectors (n = #mass points):

[ ) [

Xo X1 Vo 1
X1 X2 Vi V2 fo(.x)
X = : = X3 , VvV = : p— V3 f(x) p— .
' : ' f,_1(x
Xp—1 : V-1 : ! 1( )
\X3n—1) \V3n—1)

f3i0(x) my
fi=|fir1(x) | . Mayxzn = m
f3i+2(X)

\ )

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems 26
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* Write all the implicit equations as one big system of equations :

Myt = Mv' + Atf(x") (1)
xh = x'4 Atvitt (2)

* Plug (2) into (1):
Myt = Mv' + At f(x" + At 3)

e Expand f as Taylor series:
0
t t+1 t ty . t+1
f(x"+ At v )—f(x)—l—axf(x) (At v (4)

+ O((Atvth?)

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems
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e Plug(4)into (3): Myttt =

Mv® + At (f(xt)

+ Lex) (At )

Ox

K

Mv® + Atf(x') + At Ky

e K is the Jacobi-Matrix, i.e., the derivative of f wrt. x:

0 0
8x0 f 8x1 fb
0
8_x0 3n—1

e Kis called the tangent stiffness matrix

Y
..
mEmmmanns
]

.9
n
(4]

VR =

* (The normal stiffness matrix is evaluated at the equilibrium of the system; here, the matrix is

G. Zachmann

evaluated at an arbitrary "position" of the system in phase space, hence the name)

Virtual Reality and Physically-Based Simulation

WS December 2023
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e Now reorder terms :

(M — At ? K) vt

* Now, this has the form:

M vt + At f(x")

Avitl = p
mit A ¢ R3"x3n

b c R3"

ol e

v
«
<
=
T
i N NN NN N

.9
n
(4]

* Solve this system of linear equations with any of the standard iterative solvers

e Don't use a non-iterative solver, because

e A changes with every simulation step

e We can "warm start" the iterative solver with the solution as of last frame

G. Zachmann

* Incremental computation

Virtual Reality and Physically-Based Simulation

WS December 2023
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U Computation of the Stiffness Matrix g

e First of all, understand the

anatomy of matrix K : 3 palPS )
i ij . .
e Aspring (i,j) adds the following 3 L//‘
four 3x3 block matrices to K : \ Ri 1B )
I I
3i 3
» Block matrix K; arises from the 3%3]763,' —8ij+1 f3i —ax§+2 f3i
derivation of f; = (f3j, f3is1, 3is2) Ki; = : :
Wrt. X;= (X3j, X341, X3j+2): o T3i42 g v
J J

* In the following, consider only £
(spring force)

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems 30
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)

 First of all, compute Kj:

G. Zachmann

0
= ksa—XI <(Xj — X,') — lo

= k| -1 -1

Xj — X; )
1% — x|

—1-[lx; = x| = (% — x;

) (xj—x,-)T

[|x;—xi]|

1

Ixj — x|

[
I+ 0

(141

Virtual Reality and Physically-Based Simulation

Ixj = xi]

Ixj = x|

WS December 2023

(x; —xi)(

x .

J
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Y

e Reminder:

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023
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e Using some symmetries, we can analogously derive:

0
. Kij = a—)(jﬁ'(xi, Xj) = —Ki

unn
- .

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems 33
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Y  Overall Algorithm for Solving Implicit Euler Integration

e |nitialize K=0

e Foreach spring (i,j) compute Kj, Ky, Kj;, K;; Kij  |Kij

and accumulate it into K at the right places Kiil  |Kij

Compute b = Mv' + Atf(x")

t+1 +1

:b—>\lt

Solve the linear equation system Av

e Compute x" =x'+ Atv'!

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems
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W Advantages and Disadvantages g

* Explicit integration:
v Very easy to implement
- Small step sizes needed
- Stiff springs don't work very well
- Forces are propagated only by one spring per time step
* Implicit Integration:
v Unconditionally stable
v Stiff springs work better
v Global solver — forces are being propagated throughout the whole spring-mass
system within one time step
- Large time steps needed, b/c one step is much more expensive (if real-time is needed)
- The integration scheme introduces damping by itself (might be unwanted)
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e Visualization of: x(t) = —x(t)

position:

time \\\\

* Informal Description:

 Explicit jumps forward blindly, based on current information

e Implicit tries to find a future position and a backwards jump such that the
backwards jump arrives exactly at the current point (in phase space)

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems 36
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Simulating Volumetric Objects

* How to create a mass-spring system for a volumetric model?

* Challenge: volume preservation!

e Springs to preserve distances between mass points

e Springs to prevent shearing

e Springs to prevent bending

* You could also introduce

"angle-preserving springs" that

exert a torque on an edge

G. Zachmann

Virtual Reality and Physically-Based Simulation

No change in model & solver required

WS December 2023

Approach 1: introduce additional, volume-preserving constraints

g
NP
o+ —wyg /j > >
o Ly 4
v

Mass-Spring Systems
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* Approach 2 (and still simple): model the inside volume explicitly

e Create a tetrahedron mesh out of the geometry

* Each vertex (node) of the tetrahedron mesh becomes a mass point, each edge a
spring

e Distribute the masses of the tetrahedra (= density x volume) equally among the
mass points

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems
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@ Details on Approach 2

e Generation of the tetrahedron mesh (simple
method):

 Distribute a number of points uniformly
(perhaps randomly) in the interior of the
geometry (so called "Steiner points")

* Dito for a sheet/band outside the surface

e Connect the points by Delaunay triangulation
(see my course "Computational Geometry")

e Variation: create Steiner points outside, too,

then anchor the surface mesh within the
tetrahedron mesh:

* Represent each vertex of the surface mesh by
the barycentric combination of its surrounding
tetrahedron vertices

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023
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Y

* Approach 3: kind of an "in-between"
between approaches 1 & 2

e Create a "virtual shell" around the two-
manifold (surface) mesh

e Connect the shell with the "real" mesh
by diagonal springs

e Video:
1. no virtual shells,
2. one virtual shell,

3. several virtual shells

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023
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Y Collision Detection for Mass-Spring Systems

e Put all tetrahedra in a 3D grid (use a hash table!)

* |n case of a collision in the hash table:

e Compute exact intersection between the 2 involved tetrahedra

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems
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Collision Response

* Given: objects P and Q (= tetrahedral meshes) that collide
e Task: compute a penalty force
* Naive approach:

e For each mass point of P that
has penetrated, compute its
closest distance from the surface
of Q — force = amount + direction

* Problem:
* Implausible forces

* "Tunneling" (s. a. the chapter on force-feedback)

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023
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Y Examples

inconsistent consistent inconsistent consistent

ye.
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U Consistent Penalty Forces

1. Phase: identify all points of P that penetrate Q

2. Phase: determine all edges of P that intersect
the surface of Q

* For each such edge, compute the exact
intersection point x;

e For each intersection point, compute a normal n;

 E.g., by barycentric interpolation of the vertex
normals of Q

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023
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Y
3. Phase: compute the approximate force for border points

* Border point = a point p that penetrates Q and is incident to an intersecting edge
* Note: a border point can be incident to several intersecting edges

* Approximate the penetration depth for point p by

S w(xi, p) (xi — p)-m;
Zi{:1 w(xi, p)

where x; = point of the intersection

d(p) =

of an edge incident to p with surface Q,

n; = normal to surface of Q at point x;,

1
Ixi—pl

and w(x;,p) =

G. Zachmann Virtual Reality and Physically-Based Simulation WS December 2023 Mass-Spring Systems
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 Set the direction of the penalty force on border points:

Zf'(:1 w(x;, p) n;
Zf'(:l w(x;, p)

r(p) =

4. Phase: propagate forces by way of breadth-first traversal through the
tetrahedron mesh

S w(pn p)((pi — p) -1+ d(p)))
fozl W(Xi, P)

where p; = points of P that have been visited already, p = point not yet
visited, r;= direction of the estimated penalty force in point p; .

d(p) =
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W Visualization

G. Zachmann Virtual Reality and Physically-Based Simulation
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U Video g,

http://cg.informatik.uni-freiburg.de
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Y Art(?) with Mass-Spring Systems
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